Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation
نویسندگان
چکیده
A two-dimensional theoretical model for the field generated in the thermoelastic regime by line-focused laser illumination of a homogeneous, isotropic, linearly elastic half-space is presented. The model accounts for the effects of thermal diffusion and optical penetration, as well as the finite width and duration of the laser source. The model is obtained by solving the thermoelastic problem in plane strain, rather than by integrating available solutions for the point-source, leading to a lower computational effort. The well-known dipole model follows from appropriate limits. However, it is shown that, by simple elasticity arguments, the strength of the dipole can be related a-priori to the heat input and certain material properties. The strength is found to be smaller than that of the dipoles equivalent to a buried source due to the effect of the free surface. This fact has been overlooked by some previous researchers. Excellent quantitative agreement with experimental observations provides validation for the model. Some representative results are presented to illustrate the generated field and provide insight into the relevance of the different mechanisms taken into account in the model.
منابع مشابه
Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw.
The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking cracks. By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods. In previou...
متن کاملHigh-frequency ultrasound array element using thermoelastic expansion in an elastomeric film
The thermoelastic effect was used to produce high-frequency, broadband ultrasound in water. A pulsed diode laser, followed by an erbium-doped fiber amplifier, was focused onto a light-absorbing film deposited on a glass substrate. Conversion efficiency was improved by over 20 dB using an elastomeric film instead of a more commonly used metallic one. Radiation pattern measurements show that cons...
متن کاملOptical Absorption of Epoxy Resin and Its Role in the Laser Ultrasonic Generation Mechanism in Composite Materials
Epoxy resins are used in various applications and are essential to the fabrication of carbon fibre reinforced composite materials (CFRCs). This paper investigates laser generated ultrasound in epoxy resins using three different lasers, a TEA CO2, a Nd:YAG and a XeCl excimer. In these partially transparent materials the ultrasonic generation mechanism is directly related to the optical absorptio...
متن کاملSemi-analytical model of acoustic-wave generation by a laser line pulse in an optically absorptive isotropic cylinder
Semi-analytical model for calculating acoustic response to a line-focused laser pulse in an optically absorptive isotropic cylinder is proposed and implemented. It is assumed that the laser input is absorbed over the volume and thus creates a radially distributed thermoelastic source. Closed-form solution is obtained in the Fourier domain. Two inverse Fourier transforms in frequency and circumf...
متن کاملAn overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation
Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells. The existence of dissolved gases and also the presence of nanoparticles (NPs) in a liquid, irradiated by ultrasound, decrease the acoustic cavitation onset threshold and the resulting bubbles collapse. On the other hand, due to unique capabilities and optical properties of gold nanoparticles (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003